3.5 Dividing Polynomials

A Division of Natural Numbers If D and $d \neq 0$ are two natural numbers, then there are unique numbers q and r such that the following relation (called <i>division statement</i>) is true: $\frac{D}{d} = q + \frac{r}{d}$ or: D = dq + r where: $0 \le r < d$ D is called the <i>dividend</i> d is called the <i>divisor</i> q is called the <i>quotient</i> r is called the <i>remainder</i> Note. If the remainder r is 0 then: D is <i>divisible</i> by d and d is a <i>factor</i> of D Use the division algorithm to get the quotient and the remainder.	Ex 1. Use the division algorithm to find the quotient and the remainder for each division. a) $\frac{57}{8}$ b) $\frac{23}{-5}$
B Division of Polynomials If $D(x)$ and $d(x) \neq 0$ are two polynomial functions, then there are two <i>unique</i> polynomials $q(x)$ and $r(x)$ such that the following relation (called <i>division</i> statement) is true: $\frac{D(x)}{d(x)} = q(x) + \frac{r(x)}{d(x)}$ or: D(x) = d(x)q(x) + r(x) where: $0 \le degree(r) < degree(d)$ • D is called the <i>dividend</i> • d is called the <i>divisor</i> • q is called the <i>quotient</i> • r is called the <i>remainder</i> Note. If the remainder $r(x)$ is 0 then: • $D(x)$ is <i>divisible</i> by $d(x)$ and • $d(x)$ is a <i>factor</i> of $D(x)$ Use the <i>long division</i> algorithm to get the quotient and the remainder of the division of two polynomials.	Ex 2. Use the long division algorithm to find the quotient and the remainder for each division. a) $\frac{6x^3 - 4x^2 - 9x - 3}{2x^2 - 3}$ b) $\frac{x^3 + 1}{x + 1}$
Ex 3. Find a polynomial function $P(x)$ such that, by dividing it to $x^2 - 1$, you get the quotient $2x+1$ and the remainder $2x-1$.	Ex 4. What is the polynomial function you have to divide $3x^3 - x^2 - 2x + 6$ to, to get a quotient $x^2 + 1$ and a remainder $-5x + 7$.

C Synthetic Division AlgorithmSynthetic division is a shorthand method for dividing a polynomial $P(x)$ by a linear divisor $x - b$. $b \begin{vmatrix} a_n & a_{n-1} & a_{n-2} & \dots & a_1 & a_1 & a_0 \\ & ba_n & b(a_{n-1} + ba_n) & \dots & \\ a_n & a_{n-1} + ba_n & a_{n-2} + b(a_{n-1} + ba_n) & \dots & q_1 & q_0 & r \end{aligned}$	Ex 5. Use the synthetic division algorithm to find the quotient and the remainder. a) $(-2x^3 + 3x^2 - 4x + 5) \div (x-2)$
	b) $(x^5 + 2x^3 - 3) \div (x + 3)$
Ex 6. Use the synthetic division to divide: $\frac{2x^3 - 3x^2 + 5x - 7}{2x - 1}$	Ex 7. Use the synthetic division to divide: $\frac{x^5 - 2x^3 + 2x^2 + x - 2}{x^2 - 1}$