3.5 Dividing Polynomials

A Division of Natural Numbers

If D and $d \neq 0$ are two natural numbers, then there are unique numbers q and r such that the following relation (called division statement) is true:

$$
\begin{array}{lr}
& \frac{D}{d}=q+\frac{r}{d} \\
\text { or: } & D=d q+r \\
\text { where: } & 0 \leq r<d
\end{array}
$$

- D is called the dividend
- d is called the divisor
- $\quad q$ is called the quotient
- $\quad r$ is called the remainder

Note. If the remainder r is 0 then:

- $\quad D$ is divisible by d and
- $\quad d$ is a factor of D

Use the division algorithm to get the quotient and the remainder.

B Division of Polynomials

If $D(x)$ and $d(x) \neq 0$ are two polynomial functions, then there are two unique polynomials $q(x)$ and $r(x)$ such that the following relation (called division statement) is true:

$$
\frac{D(x)}{d(x)}=q(x)+\frac{r(x)}{d(x)}
$$

or: $\quad D(x)=d(x) q(x)+r(x)$
where: $\quad 0 \leq \operatorname{degree}(r)<\operatorname{degree}(d)$

- $\quad D$ is called the dividend
- d is called the divisor
- q is called the quotient
- r is called the remainder

Note. If the remainder $r(x)$ is 0 then:

- $\quad D(x)$ is divisible by $d(x)$ and
- $\quad d(x)$ is a factor of $D(x)$

Use the long division algorithm to get the quotient and the remainder of the division of two polynomials.

Ex 3 . Find a polynomial function $P(x)$ such that, by dividing it to $x^{2}-1$, you get the quotient $2 x+1$ and the remainder $2 x-1$.

Ex 1. Use the division algorithm to find the quotient and the remainder for each division.
a) $\frac{57}{8}$
b) $\frac{23}{-5}$

Ex 2. Use the long division algorithm to find the quotient and the remainder for each division.
a) $\frac{6 x^{3}-4 x^{2}-9 x-3}{2 x^{2}-3}$
b) $\frac{x^{3}+1}{x+1}$

Ex 4. What is the polynomial function you have to divide $3 x^{3}-x^{2}-2 x+6$ to, to get a quotient $x^{2}+1$ and a remainder $-5 x+7$.
C Synthetic Division Algorithm
Synthetic division is a shorthand method for dividing a
polynomial $P(x)$ by a linear divisor $x-b$.

$b \left\lvert\,$| a_{n} | a_{n-1} | a_{n-2} | \ldots | a_{1} | a_{1} |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |
| $b a_{n}$ | $b\left(a_{n-1}+b a_{n}\right)$ | \ldots | a_{0} | | |
| a_{n} | $a_{n-1}+b a_{n}$ | $a_{n-2}+b\left(a_{n-1}+b a_{n}\right)$ | \ldots | q_{1} | q_{0} |$\quad r\right.$

Ex 5. Use the synthetic division algorithm to find the quotient and the remainder.
a) $\left(-2 x^{3}+3 x^{2}-4 x+5\right) \div(x-2)$
b) $\left(x^{5}+2 x^{3}-3\right) \div(x+3)$

Ex 7. Use the synthetic division to divide:
$\frac{x^{5}-2 x^{3}+2 x^{2}+x-2}{x^{2}-1}$

